Ares I was the crew launch vehicle that was being developed by NASA as part of the Constellation program. The name "Ares" refers to the Greek deity Ares, who is identified with the Roman god Mars. Ares I was originally known as the " Crew Launch Vehicle" ( CLV).
NASA planned to use Ares I to launch Orion, the spacecraft intended for NASA human spaceflight missions after the Space Shuttle was retired in 2011. Ares I was to complement the larger, uncrewed Ares V, which was the cargo launch vehicle for Constellation. NASA selected the Ares designs for their anticipated overall safety, reliability and cost-effectiveness. However, the Constellation program, including Ares I, was cancelled by U.S. president Barack Obama in October 2010 with the passage of his 2010 NASA authorization bill. In September 2011, NASA detailed the Space Launch System as its new vehicle for human exploration beyond Earth's orbit.
A Shuttle-derived launch architecture was selected by NASA for the Ares I. Originally, the crewed vehicle would have used a four-segment solid rocket booster (SRB) for the first stage, and a simplified Space Shuttle Main Engine (SSME) for the second stage. An uncrewed version was to use a five-segment booster with the same second stage. Shortly after the initial design was approved, additional tests revealed that the Orion spacecraft would be too heavy for the four-segment booster to lift, and in January 2006 NASA announced they would slightly reduce the size of the Orion spacecraft, add a fifth segment to the solid-rocket first stage, and replace the single SSME with the Apollo-derived J-2X motor. While the change from a four-segment first stage to a five-segment version would allow NASA to construct virtually identical motors, the main reason for the change to the five-segment booster was the move to the J-2X.
The Exploration Systems Architecture Study concluded that the cost and safety of the Ares was superior to that of either of the Evolved Expendable Launch Vehicle (EELVs). The cost estimates in the study were based on the assumption that new launch pads would be needed for human-rated EELVs. The facilities for the current EELVs (LC-37 for Delta IV, LC-41 for Atlas V) are in place and could be modified, but this may not have been the most cost effective solution as LC-37 is a contractor owned and operated (COGO) facility and modifications for the Delta IV H were determined to be similar to those required for Ares I.. The ESAS launch safety estimates for the Ares were based on the Space Shuttle, despite the differences, and included only launches after the post-Challenger Space Shuttle redesign. The estimate counted each Shuttle launch as two safe launches of the Ares booster. The safety of the Atlas V and Delta IV was estimated from the failure rates of all Delta II, Atlas-Centaur, and Titan launches since 1992, although they are not similar designs.
The Ares I rocket was specifically being designed to launch the Orion Multi-Purpose Crew Vehicle. Orion was intended as a crew capsule, similar in design to the Apollo program capsule, to transport astronauts to the International Space Station, the Moon, and eventually Mars. Ares I might have also delivered some (limited) resources to orbit, including supplies for the International Space Station or subsequent delivery to the planned lunar base.
On August 28, 2007, NASA awarded the Ares I Upper Stage manufacturing contract to Boeing. The upper stage of Ares I was to have been built at Michoud Aerospace Factory, which was used for the Space Shuttle's External Tank and the Saturn V's S-IC first stage.
A study released in July 2009 by the 45th Space Wing of the US Air Force concluded that an abort 30–60 seconds after launch would have a ≈100% chance of killing all crew, due to the capsule being engulfed until ground impact by a cloud of solid propellant fragments, which would melt the capsule's nylon parachute material. NASA's study showed the crew capsule would have flown beyond the more severe danger.
The Ares I igniter was an advanced version of the flight-proven igniter used on the Space Shuttle's solid rocket boosters. It was approximately in diameter and long, and took advantage of upgraded insulation materials that had improved thermal properties to protect the igniter's case from the burning solid propellant. NASA successfully completed test firing of the igniter for the Ares I engines on March 10, 2009, at ATK Launch Systems test facilities near Promontory, Utah. The igniter test generated a flame in length, and preliminary data showed the igniter performed as planned.
Development of the Ares I propulsion elements continued to make strong progress. On September 10, 2009, the first Ares I development motor (DM-1) was successfully tested in a full-scale, full-duration test firing."NASA and ATK Successfully Test Ares First Stage Motor". http://www.nasa.gov/mission_pages/constellation/ares/dm1_success.html. Retrieved October 21, 2011. This test was followed by two more development motor tests, DM-2 on August 31, 2010, and DM-3 on September 8, 2011. For DM-2 the motor was cooled to a core temperature of 40 degrees Fahrenheit (4 degrees Celsius), and for DM-3 it was heated to above 90 degrees Fahrenheit (32 degrees Celsius). In addition to other objectives, these two tests validated Ares motor performance at extreme temperatures."NASA and ATK Successfully Test Five-Segment Solid Rocket Motor". http://www.nasa.gov/mission_pages/constellation/ares/10-202.html. Retrieved October 21, 2011."NASA Successfully Tests Five-Segment Solid Rocket Motor". http://www.nasa.gov/exploration/features/dm3.html. Retrieved October 21, 2011. NASA conducted a successful 500-second test firing of the J-2X rocket engine at John C. Stennis Space Center in November 2011..
The Ares I prototype, Ares I-X, successfully completed a test launch on October 28, 2009. Launch Pad 39B was damaged more than with a Space Shuttle launch. During descent, one of the three parachutes of the Ares I-X's first stage failed to open, and another opened only partially, causing the booster to splash down harder and suffer structural damage. The launch accomplished all primary test objectives.
Delays in the Ares I development schedule due to budgetary pressures and unforeseen engineering and technical difficulties would have increased the gap between the end of the Space Shuttle program and the first operational flight of Ares I. Because the Constellation program was never allocated the funding originally projected,. the total estimated cost to develop the Ares I through 2015 rose from $28 billion in 2006 to more than $40 billion in 2009. The Ares I-X project cost was $445 million.
Originally scheduled for first test flights in 2011, the independent analysis by the Augustine Commission found in late 2009 that due to technical and financial problems Ares I was not likely to have had its first crewed launch until 2017–2019 under the current budget, or late 2016 with an unconstrained budget. The Augustine Commission also stated that Ares I and Orion would have an estimated recurring cost of almost $1 billion per flight. However, later financial analysis in March 2010 showed that the Ares I would have cost $1 billion or more to operate per flight had the Ares I flown just once a year. If the Ares I system were flown multiple times a year the could have fallen to as low as $138 million per launch. In March 2010, NASA administrator Charlie Bolden testified to congress that the Ares I would cost $4–4.5 billion a year, and $1.6 billion per flight. The Ares I marginal cost was predicted to have been a fraction of the Shuttle's marginal costs even had it flown multiple times per year. By comparison, the cost of launching three astronauts on a crewed Russian Soyuz is $153 million. "Russia May Raise Price of Soyuz Seats". universetoday.com, February 10, 2010. Representative Robert Aderholt stated in March 2010 that he had received a letter from NASA which claimed that it would have cost $1.1 billion to fly the Ares I rocket three times a year.
On February 8, 2011, it was reported that Alliant Techsystems and Astrium proposed to use Ares I's first stage with a second stage derived from the Ariane 5 core stage to form a new rocket named Liberty.
Although its J-2X engine was derived from an established design, the upper stage itself would have been wholly new. Originally to have been based on both the internal and external structure of the ET, the original design called for separate fuel and oxidizer tanks, joined by an "intertank" structure, and covered with the spray-on foam insulation to keep venting to a minimum. The only new hardware on the original ET-derived second stage would have been the thrust assembly for the J-2X engine, new fill/drain/vent disconnects for the fuel and oxidizer, and mounting interfaces for the solid-fueled first stage and the Orion spacecraft.
Using a concept going back to the Apollo program, the "intertank" structure was dropped to decrease mass, and in its place, a common bulkhead, similar to that used on both the S-II and S-IVB stages of the Saturn V, would have been used between the tanks. The savings from these changes were used to increase propellant capacity, which was .
Schedule and cost
Cancellation
Design
First stage
Upper stage
See also
External links
|
|